THERMODYNAMIC STUDY OF LEVODOPA DRUG ADSORPTION ON ZIGZAG BORON NITRIDE NANOTUBES BY DENSITY FUNCTIONAL THEORY (DFT) METHOD

نویسندگان

  • Hamedani, Shahla Assistant professor, Department of Basic science, Islamic Azad University, Abhar branch, Abhar, Iran (Corresponding Author)
  • Shadi, Melina Pharm D, Department of Medicinal Chemistry, Islamic Azad University, Pharmaceutical Sciences branch, Tehran, Iran
چکیده مقاله:

Background & Aims: The overall goal of utilizing nanotubes in drug delivery is to treat a disease effectively with minimum side effects and control the drug release rate. With common methods of taking the medication, such as orally and intravenously, the drug is distributed throughout the body, and the whole body is affected by the drug, and adverse side effects occur. With the development of new methods of drug delivery, maximum effectiveness can be achieved without harming other tissues. In this research, considering the importance of Levodopa as the first line of treatment for Parkinson's disease, the interaction of this drug on boron nitride nanotubes (BNNTs) as a carrier and the possibility of forming a stable complex between them was investigated. Materials & Methods: In the present thermodynamic study, the adsorption of Levodopa on boron nitride nanotubes was investigated using density functional theory (DFT). B3LYP/6-31G(d) method and basis set was used to optimize the structure of nanoboron nitride and Levodopa drug. The interaction energy was calculated in order to determine the stability of drug adsorption on boron nitride nanotubes. Results: The amount of absorpted energy and enthalpy change were negative and so the absorption process was exothermic and thermodynamically favorable. The results of Natural Bonding Orbital (NBO) theory calculations showed that Levodopa has the role of electron donor and boronitride nanotube has the role of electron acceptor, which has changed the stability energy of the bonds in the nanotube. The same effect was also proved by molecular electrostatic potential. Analysis of the results obtained from the atom-in-molecule theory (AIM) revealed the partial covalent nature of the levodopa-nanotube complex. Conclusion: The results of the study of adsorption energy, thermodynamic functions, structural parameters, AIM parameters, and NBO analysis showed that the drug absorption process was favorable and considering the possibility of forming a stable complex, bornitride nanotubes are expected to be suitable carriers for delivering Levodopa to target cells.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of hydralazine drug adsorption on functionalized single-walled carbon nanotubes by density functional theory (DFT) method

Background: In recent years, advances in nanotechnology presents opportunities to overcome limitations in targeted drug delivery. Nano drug carriers have the ability to change the pharmacokinetics of drugs and can improve efficacy and reduce side effects. The objective of the present work is to study the interaction of Hydralazine with functionalized carbon nanotubes by performing density funct...

متن کامل

A Density Functional Theory Study of Boron Nitride Nano-Ribbons

The electronic and structural properties of pristine and carbon doped (C-doped) boron nitride nano-ribbons(BNNRs) have been studied employing density functional theory (DFT) calculations. Total energies, gapenergies, dipole moments, and quadrupole coupling constants (qcc) have been calculated in the optimizedstructures of the investigated BNNRs. The results indicated that the stability and gap ...

متن کامل

Quantum mechanical investigation of 4-hydroxy phenyl azobenzene adsorption on the boron nitride nanotubes

In this study, the adsorption of 4-hydroxy phenyl-azobenzene on the surface of (4, 0) zigzag open-end boron nitride nanotube (BNNT) has been investigated by quantum calculations. In order to find the preferred adsorption site, different positions and orientations were considered. The impacts of donor-acceptor electron delocalization on the structural and electronic properties and reactivity of ...

متن کامل

Quantum mechanical investigation of 4-hydroxy phenyl azobenzene adsorption on the boron nitride nanotubes

In this study, the adsorption of 4-hydroxy phenyl-azobenzene on the surface of (4, 0) zigzag open-end boron nitride nanotube (BNNT) has been investigated by quantum calculations. In order to find the preferred adsorption site, different positions and orientations were considered. The impacts of donor-acceptor electron delocalization on the structural and electronic properties and reactivity of ...

متن کامل

a density functional theory study of boron nitride nano-ribbons

the electronic and structural properties of pristine and carbon doped (c-doped) boron nitride nano-ribbons(bnnrs) have been studied employing density functional theory (dft) calculations. total energies, gapenergies, dipole moments, and quadrupole coupling constants (qcc) have been calculated in the optimizedstructures of the investigated bnnrs. the results indicated that the stability and gap ...

متن کامل

DFT Study of Interactions of Carbenes with Boron Nitride Nanotubes

Single-walled boron nitride nanotubes are chosen as model reactants, and (10,0) and (6,6) are chosen as representatives of armchair and zigzag nanotubes, respectively, to study the interaction of carbenes of the type :CX2. It is found that, contrary to the case of carbon nanotubes, boron nitride tubes, particularly armchair BNNTs, do not show a propensity for cyclopropane ring formation. The SW...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 33  شماره 10

صفحات  696- 707

تاریخ انتشار 2023-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

کلمات کلیدی برای این مقاله ارائه نشده است

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023